Escalation with Overdose Control Using Time to Toxicity for Cancer Phase I Clinical Trials

نویسندگان

  • Mourad Tighiouart
  • Yuan Liu
  • André Rogatko
چکیده

Escalation with overdose control (EWOC) is a Bayesian adaptive phase I clinical trial design that produces consistent sequences of doses while controlling the probability that patients are overdosed. However, this design does not take explicitly into account the time it takes for a patient to exhibit dose limiting toxicity (DLT) since the occurrence of DLT is ascertained within a predetermined window of time. Models to estimate the Maximum Tolerated Dose (MTD) that use the exact time when the DLT occurs are expected to be more precise than those where the variable of interest is categorized as presence or absence of DLT, given that information is lost in the process of categorization of the variable. We develop a class of parametric models for time to toxicity data in order to estimate the MTD efficiently, and present extensive simulations showing that the method has good design operating characteristics relative to the original EWOC and a version of time to event EWOC (TITE-EWOC) which allocates weights to account for the time it takes for a patient to exhibit DLT. The methodology is exemplified by a cancer phase I clinical trial we designed in order to estimate the MTD of Veliparib (ABT-888) in combination with fixed doses of gemcitabine and intensity modulated radiation therapy in patients with locally advanced, un-resectable pancreatic cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dose escalation with overdose control using a quasi-continuous toxicity score in cancer Phase I clinical trials.

Escalation with overdose control (EWOC) is a Bayesian adaptive design for selecting dose levels in cancer Phase I clinical trials while controlling the posterior probability of exceeding the maximum tolerated dose (MTD). EWOC has been used by clinicians to design many cancer Phase I clinical trials, see e.g. [1-4]. However, this design treats the toxicity response as a binary indicator of dose ...

متن کامل

Nonparametric overdose control with late-onset toxicity in phase I clinical trials.

Under the framework of Bayesian model selection, we propose a nonparametric overdose control (NOC) design for dose finding in phase I clinical trials. Each dose assignment is guided via a feasibility bound, which thereby can control the number of patients allocated to excessively toxic dose levels. Several aspects of the NOC design are explored, including the coherence property in dose assignme...

متن کامل

Toxicity‐dependent feasibility bounds for the escalation with overdose control approach in phase I cancer trials

Phase I trials of anti-cancer therapies aim to identify a maximum tolerated dose (MTD), defined as the dose that causes unacceptable toxicity in a target proportion of patients. Both rule-based and model-based methods have been proposed for MTD recommendation. The escalation with overdose control (EWOC) approach is a model-based design where the dose assigned to the next patient is one that, gi...

متن کامل

Adaptive Estimation of Personalized Maximum Tolerated Dose in Cancer Phase I Clinical Trials Based on All Toxicities and Individual Genomic Profile

BACKGROUND Many biomarkers have been shown to be associated with the efficacy of cancer therapy. Estimation of personalized maximum tolerated doses (pMTDs) is a critical step toward personalized medicine, which aims to maximize the therapeutic effect of a treatment for individual patients. In this study, we have established a Bayesian adaptive Phase I design which can estimate pMTDs by utilizin...

متن کامل

Advanced Designs of Cancer Phase I and Phase II Clinical Trials

The clinical trial is the most import study for the development of successful novel drugs. The aim of this dissertation is to develop innovative statistical methods to overcome the three main obstacles in clinical trials: (1) lengthy trial duration and inaccurate maximum tolerated dose (MTD) in phase I trials; (2) heterogeneity in drug effect when patients are given the same prescription and sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014